When.com Web Search

  1. Ads

    related to: hyperbola function formula examples problems with solutions math word

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola (red): features. In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry. They are used to express Lorentz boosts as hyperbolic rotations in special relativity. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian ...

  4. Pell's equation - Wikipedia

    en.wikipedia.org/wiki/Pell's_equation

    Pell's equation, also called the Pell–Fermat equation, is any Diophantine equation of the form =, where n is a given positive nonsquare integer, and integer solutions are sought for x and y. In Cartesian coordinates , the equation is represented by a hyperbola ; solutions occur wherever the curve passes through a point whose x and y ...

  5. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    A ray through the unit hyperbola = in the point (,), where is twice the area between the ray, the hyperbola, and the -axis. The earliest and most widely adopted symbols use the prefix arc-(that is: arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth), by analogy with the inverse circular functions (arcsin, etc.).

  6. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    The solutions of hyperbolic equations are "wave-like". If a disturbance is made in the initial data of a hyperbolic differential equation, then not every point of space feels the disturbance at once. Relative to a fixed time coordinate, disturbances have a finite propagation speed. They travel along the characteristics of the equation.

  7. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    Let σ 0 (n) be the divisor-counting function, and let D(n) be its summatory function: = = (). Computing D(n) naïvely requires factoring every integer in the interval [1, n]; an improvement can be made by using a modified Sieve of Eratosthenes, but this still requires Õ(n) time.

  8. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Pencils of confocal ellipses and hyperbolas. In geometry, two conic sections are called confocal if they have the same foci.. Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas.

  9. Hyperbolastic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolastic_functions

    The precision of hyperbolastic functions in modeling real world problems is somewhat due to their flexibility in their point of inflection. [ 1 ] [ 2 ] These functions can be used in a wide variety of modeling problems such as tumor growth, stem cell proliferation, pharma kinetics, cancer growth, sigmoid activation function in neural networks ...