Search results
Results From The WOW.Com Content Network
In mathematics, the algebra of sets, not to be confused with the mathematical structure of an algebra of sets, defines the properties and laws of sets, the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
A set is described by listing elements separated by commas, or by a characterizing property of its elements, within braces { }. [8] Since sets are objects, the membership relation can relate sets as well, i.e., sets themselves can be members of other sets. A derived binary relation between two sets is the subset relation, also called set inclusion.
Given any set A, there is a set B (a subset of A) such that, given any set x, x is a member of B if and only if x is a member of A and φ holds for x. Note that there is one axiom for every such predicate φ; thus, this is an axiom schema. To understand this axiom schema, note that the set B must be a subset of A.
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
In words, given two programs, if the first program is in the set of programs satisfying the property and two programs are computing the same thing, then also the second program satisfies the property. This means that if one program with a certain property is in the set, all programs computing the same function must also be in the set).
If a set is both closed and unbounded, then it is a club set. Closed proper classes are also of interest (every proper class of ordinals is unbounded in the class of all ordinals). For example, the set of all countable limit ordinals is a club set with respect to the first uncountable ordinal ; but it is not a club set with respect to any ...