When.com Web Search

  1. Ads

    related to: arithmetic progressions problems and answers word

Search results

  1. Results From The WOW.Com Content Network
  2. Problems involving arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Problems_involving...

    The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]

  3. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  4. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  5. Erdős conjecture on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Erdős_conjecture_on...

    Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem. A 2016 paper by Bloom [4] proved that if {,..

  6. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.

  7. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...

  8. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    The congruum problem is the problem of finding squares in arithmetic progression and their associated congrua. It can be formalized as a Diophantine equation . Fibonacci solved the congruum problem by finding a parameterized formula for generating all congrua, together with their associated arithmetic progressions.

  9. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The seven selected problems span a number of mathematical fields, namely algebraic geometry, arithmetic geometry, geometric topology, mathematical physics, number theory, partial differential equations, and theoretical computer science. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among ...