Search results
Results From The WOW.Com Content Network
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
The square root of x is a partial inverse to f(x) = x 2. Even if a function f is not one-to-one, it may be possible to define a partial inverse of f by restricting the domain. For example, the function = is not one-to-one, since x 2 = (−x) 2.
Part I of the theorem then says: if f is any Lebesgue integrable function on [a, b] and x 0 is a number in [a, b] such that f is continuous at x 0, then = is differentiable for x = x 0 with F′(x 0) = f(x 0). We can relax the conditions on f still further and suppose that it is merely locally integrable.
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
If D(a, b) < 0 then (a, b) is a saddle point of f. If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy ...
Some authors call a function F : X → 2 Y a set-valued function only if it satisfies the additional requirement that F(x) is not empty for every x ∈ X; this article does not require this. Definition and notation: If F : X → 2 Y is a set-valued function in a set Y then the graph of F is the set Gr F := { (x, y) ∈ X × Y : y ∈ F(x) }.
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n could also stand for the n-fold product of f, e.g. f 2 (x) = f(x) · f(x). [12] For trigonometric functions, usually the latter is meant, at least for positive exponents. [12]