When.com Web Search

  1. Ad

    related to: graph theory of cycle length and distance

Search results

  1. Results From The WOW.Com Content Network
  2. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth. A peripheral cycle is a cycle in a graph with the property that every two edges not on the cycle can be connected by a path whose interior vertices avoid the ...

  3. Cycle graph - Wikipedia

    en.wikipedia.org/wiki/Cycle_graph

    In graph theory, a cycle graph or circular graph is a graph ... A unit distance graph; In addition: As cycle graphs can be drawn ... A directed cycle graph of length 8.

  4. Distance (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Distance_(graph_theory)

    The latter may occur even if the distance in the other direction between the same two vertices is defined. In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path ...

  5. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    The graph Q 0 consists of a single vertex, while Q 1 is the complete graph on two vertices. Q 2 is a cycle of length 4. The graph Q 3 is the 1-skeleton of a cube and is a planar graph with eight vertices and twelve edges. The graph Q 4 is the Levi graph of the Möbius configuration. It is also the knight's graph for a toroidal chessboard.

  6. Longest path problem - Wikipedia

    en.wikipedia.org/wiki/Longest_path_problem

    In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.

  7. Distance-hereditary graph - Wikipedia

    en.wikipedia.org/wiki/Distance-hereditary_graph

    They are the graphs that do not have as isometric subgraphs any cycle of length five or more, or any of three other graphs: a 5-cycle with one chord, a 5-cycle with two non-crossing chords, and a 6-cycle with a chord connecting opposite vertices. Three operations by which any distance-hereditary graph can be constructed.

  8. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    In an unweighted graph, the length of a cycle, path, or walk is the number of edges it uses. In a weighted graph, it may instead be the sum of the weights of the edges that it uses. Length is used to define the shortest path, girth (shortest cycle length), and longest path between two vertices in a graph. level 1.

  9. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.