Search results
Results From The WOW.Com Content Network
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
[7] [8] A detailed survey of indexing techniques that allows one to find an arbitrary substring in a text is given by Navarro et al. [7] A computational survey of dictionary methods (i.e., methods that permit finding all dictionary words that approximately match a search pattern) is given by Boytsov. [9]
Suppose a database contains N data items and one must be retrieved based on the value of one of the fields. A simple implementation retrieves and examines each item according to the test. If there is only one matching item, this can stop when it finds that single item, but if there are multiple matches, it must test everything.
In SQL, wildcard characters can be used in LIKE expressions; the percent sign % matches zero or more characters, and underscore _ a single character. Transact-SQL also supports square brackets ([and ]) to list sets and ranges of characters to match, a leading caret ^ negates the set and matches only a character not within the list.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
When an exact match cannot be found in the TM database for the text being translated, there is an option to search for a match that is less than exact; the translator sets the threshold of the fuzzy match to a percentage value less than 100%, and the database will then return any matches in its memory corresponding to that percentage.
This is especially true of cryptographic hash functions, which may be used to detect many data corruption errors and verify overall data integrity; if the computed checksum for the current data input matches the stored value of a previously computed checksum, there is a very high probability the data has not been accidentally altered or corrupted.
See also: the {{}} template. The #if function selects one of two alternatives based on the truth value of a test string. {{#if: test string | value if true | value if false}} As explained above, a string is considered true if it contains at least one non-whitespace character.