Search results
Results From The WOW.Com Content Network
[7] [8] A detailed survey of indexing techniques that allows one to find an arbitrary substring in a text is given by Navarro et al. [7] A computational survey of dictionary methods (i.e., methods that permit finding all dictionary words that approximately match a search pattern) is given by Boytsov. [9]
When an exact match cannot be found in the TM database for the text being translated, there is an option to search for a match that is less than exact; the translator sets the threshold of the fuzzy match to a percentage value less than 100%, and the database will then return any matches in its memory corresponding to that percentage.
A symbol prepended to _ binds the match to that variable name while a symbol appended to _ restricts the matches to nodes of that symbol. Note that even blanks themselves are internally represented as Blank[] for _ and Blank[x] for _x. The Mathematica function Cases filters elements of the first argument that match the pattern in the second ...
In computer science, an algorithm for matching wildcards (also known as globbing) is useful in comparing text strings that may contain wildcard syntax. [1] Common uses of these algorithms include command-line interfaces, e.g. the Bourne shell [2] or Microsoft Windows command-line [3] or text editor or file manager, as well as the interfaces for some search engines [4] and databases. [5]
In SQL, wildcard characters can be used in LIKE expressions; the percent sign % matches zero or more characters, and underscore _ a single character. Transact-SQL also supports square brackets ([and ]) to list sets and ranges of characters to match, a leading caret ^ negates the set and matches only a character not within the list.
In a typical 6/49 game, each player chooses six distinct numbers from a range of 1–49. If the six numbers on a ticket match the numbers drawn by the lottery, the ticket holder is a jackpot winner—regardless of the order of the numbers. The probability of this happening is 1 in 13,983,816.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
To this plot is added a line at the average value, x and lines at the UCL and LCL values. On a separate graph, the calculated ranges MR i are plotted. A line is added for the average value, MR and second line is plotted for the range upper control limit (UCL r).