Search results
Results From The WOW.Com Content Network
In chemistry, linkage isomerism or ambidentate isomerism is a form of structural isomerism in which certain coordination compounds have the same composition but differ in which atom of the ligand is bonded to the metal. Typical ligands that give rise to linkage isomers are: cyanide, CN − – isocyanide, NC −; cyanate, OCN − – isocyanate ...
Such compounds give rise to linkage isomerism. Polydentate and ambidentate are therefore two different types of polyfunctional ligands (ligands with more than one functional group) which can bond to a metal center through different ligand atoms to form various isomers. Polydentate ligands can bond through one atom AND another (or several others ...
Sulfoxides can bind to metals by the oxygen atom or by sulfur. This dichotomy is called linkage isomerism. O-bonded sulfoxide ligands are far more common, especially for 1st row metals. S-bonded sulfoxides are only found for soft metal centers, such as Ru(II). Complexes with both O- and S-bonded sulfoxide ligands are known. [4]
The gauche effect is very sensitive to solvent effects, due to the large difference in polarity between the two conformers.For example, 2,3-dinitro-2,3-dimethylbutane, which in the solid state exists only in the gauche conformation, prefers the gauche conformer in benzene solution by a ratio of 79:21, but in carbon tetrachloride, it prefers the anti conformer by a ratio of 58:42. [9]
In one isomer the CO ligands are terminal. When a pair of CO are bridging, cis and trans isomers are possible depending on the location of the C 5 H 5 groups. [7] Another example in organometallic chemistry is the linkage isomerization of decaphenylferrocene, [(η 5-C 5 Ph 5) 2 Fe]. [8] [9] Formation of decaphenylferrocene from its linkage isomer
Even though the reaction involves cleavage of the S-S bond in thiocyanogen, the product is the Ru-NCS linkage isomer. In another unusual method, thiocyanate functions as both a ligand and as a reductant in its reaction with dichromate to give [Cr(NCS) 4 (NH 3 ) 2 ] − .
In this example, the concentration at which the full agonist (red curve) can half-maximally activate the receptor is about 5 x 10 −9 Molar (nM = nanomolar). Two ligands with different receptor binding affinity. Binding affinity is most commonly determined using a radiolabeled ligand, known as a tagged ligand.
In coordination chemistry, ligand isomerism is a type of structural isomerism in coordination complexes which arises from the presence of ligands which can adopt different isomeric forms. 1,2-Diaminopropane and 1,3-Diaminopropane are the examples that each feature a different isomer would be ligand isomers.