When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    For example, 4 equally spaced data points ,,, of a quadratic () obey = + +, and solving for gives the same interpolation equation obtained above using the Lagrange method. Interpolation error: Lagrange remainder formula

  3. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 3/8 rule, also called Simpson's second rule, is another method for numerical integration proposed by Thomas Simpson. It is based upon a cubic interpolation rather than a quadratic interpolation.

  4. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Excel graph of the difference between two evaluations of the smallest root of a quadratic: direct evaluation using the quadratic formula (accurate at smaller b) and an approximation for widely spaced roots (accurate for larger b). The difference reaches a minimum at the large dots, and round-off causes squiggles in the curves beyond this minimum.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In the sixth iteration, we cannot use inverse quadratic interpolation because b 5 = b 4. Hence, we use linear interpolation between (a 5, f(a 5)) = (−3.35724, −6.78239) and (b 5, f(b 5)) = (−2.71449, 3.93934). The result is s = −2.95064, which satisfies all the conditions. But since the iterate did not change in the previous step, we ...

  7. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    ) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...

  8. Inverse quadratic interpolation - Wikipedia

    en.wikipedia.org/.../Inverse_quadratic_interpolation

    In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.

  9. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    If the quadratic term is negligible—meaning that the linear term is sufficiently accurate without adding the quadratic term—then linear interpolation is sufficiently accurate. If the problem is sufficiently important, or if the quadratic term is nearly big enough to matter, then one might want to determine whether the sum of the quadratic ...