When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, [1] [2] who programmed it on the Z4, [3] and extensively researched it. [4] [5] The biconjugate gradient method provides a generalization to non-symmetric matrices.

  3. Generalized minimal residual method - Wikipedia

    en.wikipedia.org/wiki/Generalized_minimal...

    The Arnoldi process also constructs ~, an (+)-by-upper Hessenberg matrix which satisfies = + ~ an equality which is used to simplify the calculation of (see § Solving the least squares problem). Note that, for symmetric matrices, a symmetric tri-diagonal matrix is actually achieved, resulting in the MINRES method.

  4. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    The minimum of f is 0 at z if and only if z solves the linear complementarity problem. If M is positive definite, any algorithm for solving (strictly) convex QPs can solve the LCP. Specially designed basis-exchange pivoting algorithms, such as Lemke's algorithm and a variant of the simplex algorithm of Dantzig have been used for decades ...

  5. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. In matrix form, we can express the primal problem as: Maximize c T x subject to Ax ≤ b, x ≥ 0; with the corresponding symmetric dual problem,

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Lemke's algorithm - Wikipedia

    en.wikipedia.org/wiki/Lemke's_algorithm

    In mathematical optimization, Lemke's algorithm is a procedure for solving linear complementarity problems, and more generally mixed linear complementarity problems. It is named after Carlton E. Lemke. Lemke's algorithm is of pivoting or basis-exchange type. Similar algorithms can compute Nash equilibria for two-person matrix and bimatrix games.

  8. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    To solve the underdetermined (<) linear problem = where the matrix has dimensions and rank , first find the QR factorization of the transpose of : =, where Q is an orthogonal matrix (i.e. =), and R has a special form: = [].

  9. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.