Search results
Results From The WOW.Com Content Network
The Robertson–Seymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]
An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.
A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.
The Robertson–Seymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying KÅ‘nig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.
In 1993, with Seymour and Robin Thomas, Robertson proved the -free case for which the Hadwiger conjecture relating graph coloring to graph minors is known to be true. [ 8 ] In 1996, Robertson, Seymour, Thomas, and Daniel P. Sanders published a new proof of the four color theorem , [ 9 ] confirming the Appel–Haken proof which until then had ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If a family F of graphs is closed under taking minors (every minor of a member of F is also in F), then by the Robertson–Seymour theorem F can be characterized as the graphs that do not have any minor in X, where X is a finite set of forbidden minors. [42]