When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energymomentum_relation

    Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...

  3. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The Dyson series can be alternatively rewritten as a sum over Feynman diagrams, where at each vertex both the energy and momentum are conserved, but where the length of the energy-momentum four-vector is not necessarily equal to the mass, i.e. the intermediate particles are so-called off-shell. The Feynman diagrams are much easier to keep track ...

  4. Recoil temperature - Wikipedia

    en.wikipedia.org/wiki/Recoil_temperature

    In condensed matter physics and atomic physics, the recoil temperature is a fundamental lower limit of temperature attainable by some laser cooling schemes. When an atom decays from an excited electronic state at rest to a lower energy electronic state by the spontaneous emission of a photon, due to conservation of momentum, the atom gains momentum equivalent to the momentum of the photon.

  5. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    The photon having non-zero linear momentum, one could imagine that it has a non-vanishing rest mass m 0, which is its mass at zero speed. However, we will now show that this is not the case: m 0 = 0. Since the photon propagates with the speed of light, special relativity is called for. The relativistic expressions for energy and momentum ...

  6. On shell and off shell - Wikipedia

    en.wikipedia.org/wiki/On_shell_and_off_shell

    the mass–energy equivalence formula which gives the energy in terms of the momentum and the rest mass of a particle. The equation for the mass shell is also often written in terms of the four-momentum ; in Einstein notation with metric signature (+,−,−,−) and units where the speed of light c = 1 {\displaystyle c=1} , as p μ p μ ≡ p ...

  7. Tests of relativistic energy and momentum - Wikipedia

    en.wikipedia.org/wiki/Tests_of_relativistic...

    When a photon interacts with an atomic nucleus, electron-positron pairs can be generated in case the energy of the photon matches the required threshold energy, which is the combined electron-positron rest energy of 1.02 MeV. However, if the photon energy is even higher, then the exceeding energy is converted into kinetic energy of the particles.

  8. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  9. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.