When.com Web Search

  1. Ad

    related to: how to determine if equation has no solution

Search results

  1. Results From The WOW.Com Content Network
  2. Extraneous and missing solutions - Wikipedia

    en.wikipedia.org/wiki/Extraneous_and_missing...

    Therefore, the solution = is extraneous and not valid, and the original equation has no solution. For this specific example, it could be recognized that (for the value x = − 2 {\displaystyle x=-2} ), the operation of multiplying by ( x − 2 ) ( x + 2 ) {\displaystyle (x-2)(x+2)} would be a multiplication by zero.

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  4. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Abel wrote: "The first and, if I am not mistaken, the only one who, before me, has sought to prove the impossibility of the algebraic solution of general equations is the mathematician Ruffini. But his memoir is so complicated that it is very difficult to determine the validity of his argument.

  5. Underdetermined system - Wikipedia

    en.wikipedia.org/wiki/Underdetermined_system

    The main property of linear underdetermined systems, of having either no solution or infinitely many, extends to systems of polynomial equations in the following way. A system of polynomial equations which has fewer equations than unknowns is said to be underdetermined.

  6. Overdetermined system - Wikipedia

    en.wikipedia.org/wiki/Overdetermined_system

    There will be an infinitude of other solutions only when the system of equations has enough dependencies (linearly dependent equations) that the number of independent equations is at most N − 1. But with M ≥ N the number of independent equations could be as high as N , in which case the trivial solution is the only one.

  7. Hilbert's tenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_tenth_problem

    Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.

  8. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  9. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    In that case, it will never prove that a particular polynomial equation has a solution when there is no solution in the integers. Thus, if T were complete and ω-consistent, it would be possible to determine algorithmically whether a polynomial equation has a solution by merely enumerating proofs of T until either " p has a solution" or " p has ...