When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Grouping the prime factors of the factorial into prime powers in different ways produces the multiplicative partitions of factorials. [56] The special case of Legendre's formula for = gives the number of trailing zeros in the decimal representation of the factorials. [57]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    In each case, calculating the permutation proceeds by using the leftmost factoradic digit (here, 0, 1, or 2) as the first permutation digit, then removing it from the list of choices (0, 1, and 2). Think of this new list of choices as zero indexed, and use each successive factoradic digit to choose from its remaining elements.

  4. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    The 1620 was a decimal-digit machine which used discrete transistors, yet it had hardware (that used lookup tables) to perform integer arithmetic on digit strings of a length that could be from two to whatever memory was available. For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was ...

  5. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In the same way that the double factorial generalizes the notion of the single factorial, the following definition of the integer-valued multiple factorial functions (multifactorials), or α-factorial functions, extends the notion of the double factorial function for positive integers :

  6. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Construct an ambiguous form (a, b, c) that is an element f ∈ G Δ of order dividing 2 to obtain a coprime factorization of the largest odd divisor of Δ in which Δ = −4ac or Δ = a(a − 4c) or Δ = (b − 2a)(b + 2a). If the ambiguous form provides a factorization of n then stop, otherwise find another ambiguous form until the ...

  7. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    Here, the order of the generator, | g |, is the number of non-zero elements of the field. In the case of GF(2 8) this is 2 8 − 1 = 255. That is to say, for the Rijndael example: (x + 1) 255 = 1. So this can be performed with two look up tables and an integer subtract. Using this idea for exponentiation also derives benefit:

  8. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    When the variable is a positive integer, the number () is equal to the number of n-permutations from a set of x items, that is, the number of ways of choosing an ordered list of length n consisting of distinct elements drawn from a collection of size .

  9. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    [1] [2] [3] One way of stating the approximation involves the logarithm of the factorial: ⁡ (!) = ⁡ + (⁡), where the big O notation means that, for all sufficiently large values of , the difference between ⁡ (!