Search results
Results From The WOW.Com Content Network
Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system. [ 1 ] [ 2 ] The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them.
The term "multiprocessor" can be confused with the term "multiprocessing". While multiprocessing is a type of processing in which two or more processors work together to execute multiple programs simultaneously, multiprocessor refers to a hardware architecture that allows multiprocessing. [5]
Diagram of a symmetric multiprocessing system. Symmetric multiprocessing or shared-memory multiprocessing [1] (SMP) involves a multiprocessor computer hardware and software architecture where two or more identical processors are connected to a single, shared main memory, have full access to all input and output devices, and are controlled by a single operating system instance that treats all ...
Chip-level multiprocessing (CMP or multicore): integrates two or more processors into one chip, each executing threads independently. Any combination of multithreaded/SMT/CMP. The key factor to distinguish them is to look at how many instructions the processor can issue in one cycle and how many threads from which the instructions come.
Non-uniform memory access (NUMA) is a computer memory design used in multiprocessing, where the memory access time depends on the memory location relative to the processor. Under NUMA, a processor can access its own local memory faster than non-local memory (memory local to another processor or memory shared between processors). [ 1 ]
Since computer manufacturers have long implemented symmetric multiprocessing (SMP) designs using discrete CPUs, the issues regarding implementing multi-core processor architecture and supporting it with software are well known. Additionally: Using a proven processing-core design without architectural changes reduces design risk significantly.
From the software standpoint, hardware support for multithreading is more visible to software, requiring more changes to both application programs and operating systems than multiprocessing. Hardware techniques used to support multithreading often parallel the software techniques used for computer multitasking. Thread scheduling is also a major ...
Massively parallel is the term for using a large number of computer processors (or separate computers) to simultaneously perform a set of coordinated computations in parallel. GPUs are massively parallel architecture with tens of thousands of threads.