When.com Web Search

  1. Ads

    related to: explain how ph affects enzymes function

Search results

  1. Results From The WOW.Com Content Network
  2. Acid–base homeostasis - Wikipedia

    en.wikipedia.org/wiki/Acid–base_homeostasis

    An acid-base diagram for human plasma, showing the effects on the plasma pH when P CO 2 in mmHg or Standard Base Excess (SBE) occur in excess or are deficient in the plasma [23] Acid–base imbalance occurs when a significant insult causes the blood pH to shift out of the normal range (7.32 to 7.42 [ 16 ] ).

  3. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  4. Acid phosphatase - Wikipedia

    en.wikipedia.org/wiki/Acid_phosphatase

    Acid phosphatase (EC 3.1.3.2, systematic name phosphate-monoester phosphohydrolase (acid optimum)) is an enzyme that frees attached phosphoryl groups from other molecules during digestion. It can be further classified as a phosphomonoesterase .

  5. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    Blood pH is usually slightly basic, with a pH of 7.365, referred to as physiological pH in biology and medicine. Plaque formation in teeth can create a local acidic environment that results in tooth decay through demineralization. Enzymes and other Proteins have an optimal pH range for function and can become inactivated or denatured outside ...

  6. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.

  7. Pepsin - Wikipedia

    en.wikipedia.org/wiki/Pepsin

    Pepsin is inactive at pH 6.5 and above, however pepsin is not fully denatured or irreversibly inactivated until pH 8.0. [11] [15] Therefore, pepsin in solutions of up to pH 8.0 can be reactivated upon re-acidification. The stability of pepsin at high pH has significant implications on disease attributed to laryngopharyngeal reflux. Pepsin ...

  8. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    The enzyme is integrated into thylakoid membrane; the CF 1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic mechanism of the chloroplast ATP synthase are almost the same as those of the bacterial ...

  9. Renal physiology - Wikipedia

    en.wikipedia.org/wiki/Renal_physiology

    The body is very sensitive to its pH. Outside the range of pH that is compatible with life, proteins are denatured and digested, enzymes lose their ability to function, and the body is unable to sustain itself. The kidneys maintain acid-base homeostasis by regulating the pH of the blood plasma. Gains and losses of acid and base must be balanced.