Search results
Results From The WOW.Com Content Network
Faraday experimentally studied lines of magnetic force and electrostatic force, showing them not to fit action at a distance models. In 1852 Faraday wrote the paper "On the Physical Character of the Lines of Magnetic Force" [ 8 ] which examined gravity, radiation, and electricity, and their possible relationships with the transmission medium ...
Magnetic pole model: In the magnetic pole model, the pole surfaces of a permanent magnet are imagined to be covered with so-called magnetic charge, north pole particles on the north pole and south pole particles' on the south pole, that are the source of the magnetic field lines.
[note 5] Magnetic field "lines" are also visually displayed in polar auroras, in which plasma particle dipole interactions create visible streaks of light that line up with the local direction of Earth's magnetic field. Field lines can be used as a qualitative tool to visualize magnetic forces. In ferromagnetic substances like iron and in ...
Michael Faraday developed the concept of lines of force to describe electric and magnetic phenomena. [13] In 1831, he writes [13] By magnetic curves, I mean the lines of magnetic forces, however modified by the juxtaposition of poles, which would be depicted by iron filings; or those to ·which a very small magnetic needle would form a tangent."
The magnetic equator is the line where the inclination is zero (the magnetic field is horizontal). The global definition of the Earth's field is based on a mathematical model. If a line is drawn through the center of the Earth, parallel to the moment of the best-fitting magnetic dipole, the two positions where it intersects the Earth's surface ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
The shape of the magnet was originally created as a replacement for the bar magnet as it makes the magnetic field stronger for a magnet of comparable strength. [5] A horseshoe magnet is stronger because both poles of the magnet are closer to each other and in the same plane which allows the magnetic lines of flux to flow along a more direct path between the poles and concentrates the magnetic ...
The magnetic tension force, depicted by the red arrow, acts to straighten the bent magnetic field lines in black. In physics, magnetic tension is a restoring force with units of force density that acts to straighten bent magnetic field lines.