Search results
Results From The WOW.Com Content Network
These small regions of high intensity are observed on T2 weighted MRI images (typically created using 3D FLAIR) within cerebral white matter (white matter lesions, white matter hyperintensities or WMH) [1] [2] or subcortical gray matter (gray matter hyperintensities or GMH). The volume and frequency is strongly associated with increasing age. [2]
Head CT showing periventricular white matter lesions. Leukoaraiosis is a particular abnormal change in appearance of white matter near the lateral ventricles. It is often seen in aged individuals, but sometimes in young adults. [1] [2] On MRI, leukoaraiosis changes appear as white matter hyperintensities (WMHs) in T2 FLAIR images.
T2-weighted images also displaying cerebrospinal fluid and rarefied/cystic white matter. To view the remaining tissue, and get perspective on the damage done (also helpful in determining the rate of deterioration) (T1-weighted), proton density, and FLAIR images are ideal as they show radiating stripe patterns in the degenerating white matter.
White matter is the tissue through which messages pass between different areas of grey matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation.
Others classify them as hippocampal, cortical, and WM lesions, [23] and finally, others give seven areas: intracortical, mixed white matter-gray matter, juxtacortical, deep gray matter, periventricular white matter, deep white matter, and infratentorial lesions. [24] The distribution of the lesions could be linked to the clinical evolution [25]
The presence of incidental MRI findings in the CNS white matter: Ovoid and well-circumscribed homogeneous foci, with or without involvement of the corpus callosum; T2 hyperintensities larger than 3 mm in diameter, which fulfill at least 3 of the 4 Barkhof MRI criteria [7] for DIS; The CNS abnormalities are not consistent with a vascular condition
On magnetic resonance imaging (MRI), lesions of AHL typically show extensive T2-weighted and fluid-attenuated inversion recovery (FLAIR) white matter hyperintensities with areas of hemorrhages, significant edema, and mass effect. [62]
The hotcross bun sign is a radiologic sign observed on transverse T2-weighted magnetic resonance (MR) images of the brain, describing a cross-shaped (or cruciform) hyperintensity within the pons. This sign is most commonly associated with the cerebellar subtype of multiple system atrophy (MSA-c). [ 1 ]