Search results
Results From The WOW.Com Content Network
The Shockley–Queisser limit, zoomed in near the region of peak efficiency. In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes."
English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell. The x-axis is the bandgap of the solar cell, the y-axis is the highest possible efficiency (ratio of electrical power output to light power input). (Assumes a single-junction solar cell under unconcentrated light, and some other assumptions too.)
English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell. The x-axis is the bandgap of the solar cell, the y-axis is the highest possible efficiency (ratio of electrical power output to light power input). (Assumes a single-junction solar cell under unconcentrated light, and some other assumptions too.)
English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell (black), and the inevitable losses that limit it (other colors). The black height is energy that can be extracted as useful electrical power; the pink height is energy of below-bandgap photons; the green height is energy lost when hot photogenerated electrons and holes relax to the band edges; the blue ...
English: Black curve: The limit for the maximum open-circuit current of a solar cell within the Shockley-Queisser model. The x-axis is the bandgap of the solar cell in electron volts, the y-axis is the highest possible open-circuit voltage in volts.
English: The limit for the maximum short-circuit current of a solar cell within the Shockley-Queisser model. The x-axis is the bandgap of the solar cell in electron volts, the y-axis is the highest possible short-circuit current density in mA/cm^2.
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
The theoretical performance of a solar cell was first studied in depth in the 1960s, and is today known as the Shockley–Queisser limit. The limit describes several loss mechanisms that are inherent to any solar cell design. The first are the losses due to blackbody radiation, a loss mechanism that affects any material object above absolute zero.