Search results
Results From The WOW.Com Content Network
Fast-Hash [3] 32 or 64 bits xorshift operations SpookyHash 32, 64, or 128 bits see Jenkins hash function: CityHash [4] 32, 64, 128, or 256 bits FarmHash [5] 32, 64 or 128 bits MetroHash [6] 64 or 128 bits numeric hash (nhash) [7] variable division/modulo xxHash [8] 32, 64 or 128 bits product/rotation t1ha (Fast Positive Hash) [9] 64 or 128 bits ...
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
SHA-512 – NESSIE selection hash function, FIPS 180-2, 512-bit digest; CRYPTREC recommendation; SHA-3 – originally known as Keccak; was the winner of the NIST hash function competition using sponge function. Streebog – Russian algorithm created to replace an obsolete GOST hash function defined in obsolete standard GOST R 34.11-94.
It is of interest as a type of post-quantum cryptography. So far, hash-based cryptography is used to construct digital signatures schemes such as the Merkle signature scheme, zero knowledge and computationally integrity proofs, such as the zk-STARK [1] proof system and range proofs over issued credentials via the HashWires [2] protocol.
Knapsack-based hash functions—a family of hash functions based on the knapsack problem. The Zémor-Tillich hash function—a family of hash functions that relies on the arithmetic of the group of matrices SL 2. Finding collisions is at least as difficult as finding factorization of certain elements in this group.
The Secure Hash Algorithms are a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS), including: SHA-0: A retronym applied to the original version of the 160-bit hash function published in 1993 under the name "SHA". It was ...