Search results
Results From The WOW.Com Content Network
The color temperature scale describes only the color of light emitted by a light source, which may actually be at a different (and often much lower) temperature. [1] [2] Color temperature has applications in lighting, [3] photography, [4] videography, [5] publishing, [6] manufacturing, [7] astrophysics, [8] and other fields.
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
Before the advent of powerful personal computers, it was common to estimate the correlated color temperature by way of interpolation from look-up tables and charts. [18] The most famous such method is Robertson's, [ 19 ] who took advantage of the relatively even spacing of the mired scale (see above) to calculate the CCT T c using linear ...
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer P = / W ML 2 T −3: Thermal intensity I
Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per second (m 3 /s). Another unit used is standard cubic centimetres per ...
At standard mean sea level it specifies a temperature of 15 °C (59 °F), pressure of 101,325 pascals (14.6959 psi) (1 atm), and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft). It also specifies a temperature lapse rate of −6.5 °C (−11.7 °F) per km (approximately −2 °C (−3.6 °F) per 1,000 ft).
In general, VCF / CTL values have an inverse relationship with observed temperature relative to the base temperature. That is, observed temperatures above 60 °F (or the base temperature used) typically correlate with a correction factor below "1", while temperatures below 60 °F correlate with a factor above "1".
A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous states) occur and coexist at equilibrium.