Ads
related to: high vacuum systems
Search results
Results From The WOW.Com Content Network
Ultra-high vacuum (often spelled ultrahigh in American English, UHV) is the vacuum regime characterised by pressures lower than about 1 × 10 −6 pascals (1.0 × 10 −8 mbar; 7.5 × 10 −9 Torr). UHV conditions are created by pumping the gas out of a UHV chamber.
The most common sources of trouble (out-gassing) in vacuum systems are: Cadmium, often present in the form of cadmium plating, or in some soldering and brazing alloys; Zinc, problematic for high vacuum and higher temperatures, present in some construction alloys, e.g. brass and some brazing alloys.
Vacuum systems usually consist of gauges, vapor jet and pumps, vapor traps and valves along with other extensional piping. A vessel that is operating under vacuum system may be any of these types such as processing tank, steam simulator, particle accelerator, or any other type of space that has an enclosed chamber to maintain the system in less than atmospheric gas pressure.
An oil diffusion pump is used to achieve higher vacuum (lower pressure) than is possible by use of positive displacement pumps alone. Although its use has been mainly associated within the high-vacuum range, down to 1 × 10 −9 mbar (1 × 10 −7 Pa), diffusion pumps today can produce pressures approaching 1 × 10 −10 mbar (1 × 10 −8 Pa) when properly used with modern fluids and accessories.
In systems where the substrate needs to be cooled, the ultra-high vacuum environment within the growth chamber is maintained by a system of cryopumps and cryopanels, chilled using liquid nitrogen or cold nitrogen gas to a temperature close to 77 kelvins (−196 degree Celsius). Cold surfaces act as a sink for impurities in the vacuum, so vacuum ...
The system is an axial compressor that puts energy into the gas, rather than a turbine, which takes energy out of a moving fluid to create rotary power, thus "turbomolecular pump" is a misnomer. Gas captured by the upper stages is pushed into the lower stages and successively compressed to the level of the fore-vacuum (backing pump) pressure.
Outgassing can also be reduced simply by desiccation prior to vacuum pumping. [24] High-vacuum systems generally require metal chambers with metal gasket seals such as Klein flanges or ISO flanges, rather than the rubber gaskets more common in low vacuum chamber seals. [25] The system must be clean and free of organic matter to minimize outgassing.
Ultra-high vacuum systems are usually baked, preferably under vacuum, to temporarily raise the vapour pressure of all outgassing materials and boil them off. Once the bulk of the outgassing materials are boiled off and evacuated, the system may be cooled to lower vapour pressures and minimize residual outgassing during actual operation.