Ads
related to: riemann sums in summation notation practice problems with answers pdf- Exam Prep
Test prep, simplified
Personalized study recommendations
- Plagiarism Checker
It's your writing, make sure of it
Check for plagiarism mistakes.
- Exam Prep
Search results
Results From The WOW.Com Content Network
In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann . One very common application is in numerical integration , i.e., approximating the area of functions or lines on a graph, where it is also known as the rectangle rule .
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value {} denotes the fractional part of () is a Bernoulli polynomial.
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...
The Riemann zeta function ζ(s) is a function of a complex variable s = σ + it, where σ and t are real numbers. (The notation s, σ, and t is used traditionally in the study of the zeta function, following Riemann.) When Re(s) = σ > 1, the function can be written as a converging summation or as an integral:
Zeta-function regularization gives an analytic structure to any sums over an arithmetic function f(n). Such sums are known as Dirichlet series. The regularized form ~ = = converts divergences of the sum into simple poles on the complex s-plane. In numerical calculations, the zeta-function regularization is inappropriate, as it is extremely slow ...