When.com Web Search

  1. Ads

    related to: carrier mobility in semiconductor applications 7th edition

Search results

  1. Results From The WOW.Com Content Network
  2. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.

  3. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    Generally, the carrier mobility μ depends on temperature T, on the applied electric field E, and the concentration of localized states N. Depending on the model, increased temperature may either increase or decrease carrier mobility, applied electric field can increase mobility by contributing to thermal ionization of trapped charges, and ...

  4. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    In solid-state physics of semiconductors, carrier generation and carrier recombination are processes by which mobile charge carriers (electrons and electron holes) are created and eliminated. Carrier generation and recombination processes are fundamental to the operation of many optoelectronic semiconductor devices , such as photodiodes , light ...

  5. Saturation velocity - Wikipedia

    en.wikipedia.org/wiki/Saturation_velocity

    The proportionality constant is known as mobility of the carrier, which is a material property. A good conductor would have a high mobility value for its charge carrier, which means higher velocity, and consequently higher current values for a given electric field strength. There is a limit though to this process and at some high field value, a ...

  6. Carrier lifetime - Wikipedia

    en.wikipedia.org/wiki/Carrier_Lifetime

    The carrier lifetime can vary significantly depending on the materials and construction of the semiconductor. Carrier lifetime plays an important role in bipolar transistors and solar cells. In indirect band gap semiconductors, the carrier lifetime strongly depends on the concentration of recombination centers. Gold atoms act as highly ...

  7. Charge carrier - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier

    Free carrier concentration is the concentration of free carriers in a doped semiconductor. It is similar to the carrier concentration in a metal and for the purposes of calculating currents or drift velocities can be used in the same way. Free carriers are electrons that have been introduced into the conduction band (valence band) by doping ...

  8. Monte Carlo methods for electron transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.

  9. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    In condensed matter physics and electrochemistry, drift current is the electric current, or movement of charge carriers, which is due to the applied electric field, often stated as the electromotive force over a given distance. When an electric field is applied across a semiconductor material, a current is produced due to the flow of charge ...