Search results
Results From The WOW.Com Content Network
In control theory, we may need to find out whether or not a system such as ˙ = + () = + is controllable, where , , and are, respectively, , , and matrices for a system with inputs, state variables and outputs.
Controllability is an important property of a control system and plays a crucial role in many control problems, such as stabilization of unstable systems by feedback, or optimal control. Controllability and observability are dual aspects of the same problem.
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
The observability and controllability of a system are mathematical duals (i.e., as controllability provides that an input is available that brings any initial state to any desired final state, observability provides that knowing an output trajectory provides enough information to predict the initial state of the system).
In control theory, Ackermann's formula provides a method for designing controllers to achieve desired system behavior by directly calculating the feedback gains needed to place the closed-loop system's poles (eigenvalues) [1] at specific locations (pole allocation problem).
In control theory, a Kalman decomposition provides a mathematical means to convert a representation of any linear time-invariant (LTI) control system to a form in which the system can be decomposed into a standard form which makes clear the observable and controllable components of the system.
It is often difficult to find a control-Lyapunov function for a given system, but if one is found, then the feedback stabilization problem simplifies considerably. For the control affine system ( 2 ), Sontag's formula (or Sontag's universal formula ) gives the feedback law k : R n → R m {\displaystyle k:\mathbb {R} ^{n}\to \mathbb {R} ^{m ...