When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerov's method - Wikipedia

    en.wikipedia.org/wiki/Numerov's_method

    Numerov's method (also called Cowell's method) is a numerical method to solve ordinary differential equations of second order in which the first-order term does not appear. It is a fourth-order linear multistep method. The method is implicit, but can be made explicit if the differential equation is linear.

  3. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    methods for second order ODEs. We said that all higher-order ODEs can be transformed to first-order ODEs of the form (1). While this is certainly true, it may not be the best way to proceed. In particular, Nyström methods work directly with second-order equations.

  5. Reduction of order - Wikipedia

    en.wikipedia.org/wiki/Reduction_of_order

    Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution y 1 ( x ) {\displaystyle y_{1}(x)} is known and a second linearly independent solution y 2 ( x ) {\displaystyle y_{2}(x)} is desired.

  6. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  7. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    A further restriction is that the series coefficients will be specified by a nonlinear recurrence (the nonlinearities are inherited from the differential equation). In order for the solution method to work, as in linear equations, it is necessary to express every term in the nonlinear equation as a power series so that all of the terms may be ...

  8. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    Suppose that we want to solve the differential equation ′ = (,). The trapezoidal rule is given by the formula + = + ((,) + (+, +)), where = + is the step size. [1]This is an implicit method: the value + appears on both sides of the equation, and to actually calculate it, we have to solve an equation which will usually be nonlinear.

  9. Sturm separation theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm_separation_theorem

    The zeros of two linearly independent solutions of the Airy equation ″ = alternate, as predicted by the Sturm separation theorem.. In mathematics, in the field of ordinary differential equations, Sturm separation theorem, named after Jacques Charles François Sturm, describes the location of roots of solutions of homogeneous second order linear differential equations.