Search results
Results From The WOW.Com Content Network
The mitosis process in the cells of eukaryotic organisms follows a similar pattern, but with variations in three main details. "Closed" and "open" mitosis can be distinguished on the basis of nuclear envelope remaining intact or breaking down. An intermediate form with partial degradation of the nuclear envelope is called "semiopen" mitosis.
The G 1 phase, gap 1 phase, or growth 1 phase, is the first of four phases of the cell cycle that takes place in eukaryotic cell division. In this part of interphase , the cell synthesizes mRNA and proteins in preparation for subsequent steps leading to mitosis.
G 2 (Gap 2), in which the cell resumes its growth in preparation for division. The cell continues to grow until mitosis begins. In plants, chloroplasts divide during G2. In addition, some cells that do not divide often or ever, enter a stage called G 0 (Gap zero), which is either a stage separate from interphase or an extended G 1.
G 2 phase, Gap 2 phase, or Growth 2 phase, is the third subphase of interphase in the cell cycle directly preceding mitosis. It follows the successful completion of S phase, during which the cell’s DNA is replicated. G 2 phase ends with the onset of prophase, the first phase of mitosis in which the cell’s chromatin condenses into chromosomes.
[5] [6] After growth from the zygote to the adult, cell division by mitosis allows for continual construction and repair of the organism. [7] The human body experiences about 10 quadrillion cell divisions in a lifetime. [8] The primary concern of cell division is the maintenance of the original cell's genome.
It is dioicous: male plants produce only antheridia in terminal rosettes, female plants produce only archegonia in the form of stalked capsules. [26] Seed plant gametophytes are also dioicous. However, the parent sporophyte may be monoecious, producing both male and female gametophytes or dioecious, producing gametophytes of one gender only.
Plant cells are fixed with regards to their neighbor cells within the tissues they are growing in. In contrast to animals where certain cells can migrate within the embryo to form new tissues, the seedlings of higher plants grow entirely based on the orientation of cell division and subsequent elongation and differentiation of cells within their cell walls.
Plant cells lack centrioles or spindle pole bodies except in their flagellate male gametes, and they are entirely absent in the conifers and flowering plants. [4] Instead, the nuclear envelope itself appears to function as the main MTOC for microtubule nucleation and spindle organization during plant cell mitosis.