Search results
Results From The WOW.Com Content Network
A scalar S is rank 0 (it has no indices), V k is a vector (rank 1), M ij is a matrix (rank 2), C ijk is a cube (rank 3). Program Cubes are n-dimensional arrays of functions (program transformations) that represent n-dimensional product lines. The values along each axis of a cube denote either a base program or a feature that could elaborate a ...
Matrix Toolkit Java (MTJ) is an open-source Java software library for performing numerical linear algebra. The library contains a full set of standard linear algebra operations for dense matrices based on BLAS and LAPACK code. Partial set of sparse operations is provided through the Templates project.
EJML is free, written in 100% Java and has been released under an Apache v2.0 license. EJML has three distinct ways to interact with it: 1) Procedural, 2) SimpleMatrix, and 3) Equations. The procedural style provides all capabilities of EJML and almost complete control over matrix creation, speed, and specific algorithms.
Java implementation of Prim's algorithm; Implementations of DFS maze creation algorithm in multiple languages at Rosetta Code; Armin Reichert: 34 maze algorithms in Java 8, with demo application; Coding Challenge #10.1: Maze Generator with p5.js - Part 1: Maze generation algorithm in JavaScript with p5; Maze Generator by Charles Bond, COMPUTE!
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
In coding theory, a generator matrix is a matrix whose rows form a basis for a linear code. The codewords are all of the linear combinations of the rows of this matrix, that is, the linear code is the row space of its generator matrix.
Here we plot the Chebyshev nodes of the first kind and the second kind, both for n = 8. For both kinds of nodes, we first plot the points equi-distant on the upper half unit circle in blue. Then the blue points are projected down to the x-axis. The projected points, in red, are the Chebyshev nodes.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...