Search results
Results From The WOW.Com Content Network
This page was last edited on 26 October 2024, at 11:02 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This statistics -related article is a stub. You can help Wikipedia by expanding it.
A funnel plot is a graph designed to check for the existence of publication bias; funnel plots are commonly used in systematic reviews and meta-analyses. In the absence of publication bias, it assumes that studies with high precision will be plotted near the average, and studies with low precision will be spread evenly on both sides of the ...
There have been written many different representations of the biased random walks on graphs based on the particular purpose of the analysis. A common representation of the mechanism for undirected graphs is as follows: [2] On an undirected graph, a walker takes a step from the current node, , to node .
The form of Eq(12) is usually the goal of a sensitivity analysis, since it is general, i.e., not tied to a specific set of parameter values, as was the case for the direct-calculation method of Eq(3) or (4), and it is clear basically by inspection which parameters have the most effect should they have systematic errors. For example, if the ...
Plot with random data showing heteroscedasticity: The variance of the y-values of the dots increases with increasing values of x. In statistics, a sequence of random variables is homoscedastic (/ ˌ h oʊ m oʊ s k ə ˈ d æ s t ɪ k /) if all its random variables have the same finite variance; this is also known as homogeneity of variance.
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
Maximal entropy random walk (MERW) is a popular type of biased random walk on a graph, in which transition probabilities are chosen accordingly to the principle of maximum entropy, which says that the probability distribution which best represents the current state of knowledge is the one with largest entropy.