Search results
Results From The WOW.Com Content Network
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!
The slope a measures the rate of change of the output y per unit change in the input x. In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +. Negative slope a indicates a decrease in y for each increase in x.
Laplace's expansion by minors for computing the determinant along a row, column or diagonal extends to the permanent by ignoring all signs. [9]For every , = =,,,where , is the entry of the ith row and the jth column of B, and , is the permanent of the submatrix obtained by removing the ith row and the jth column of B.
The bound given by an (n, d, λ)-graph on λ i for i ≠ 1 is useful many contexts, including the expander mixing lemma. Spectral expansion can be two-sided, as above, with | |, or it can be one-sided, with . The latter is a weaker notion that holds also for bipartite graphs and is still useful for many applications, such as the Alon–Chung lemma.
The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation d d x e x = e x {\displaystyle {\tfrac {d}{dx}}e^{x}=e^{x}} means that the slope of the tangent to the graph at each point is equal to its height (its y -coordinate) at that point.
Graph of () = (blue) with its linear approximation = + (red) at =. If a real-valued function f ( x ) {\textstyle f(x)} is differentiable at the point x = a {\textstyle x=a} , then it has a linear approximation near this point.
Linearization makes it possible to use tools for studying linear systems to analyze the behavior of a nonlinear function near a given point. The linearization of a function is the first order term of its Taylor expansion around the point of interest. For a system defined by the equation
Closed graph theorem (functional analysis) – Theorems connecting continuity to closure of graphs; Continuous linear operator; Densely defined operator – Function that is defined almost everywhere (mathematics) Hahn–Banach theorem – Theorem on extension of bounded linear functionals