Search results
Results From The WOW.Com Content Network
The prismatic groups are denoted by D nh. These groups are characterized by i) an n-fold proper rotation axis C n; ii) n 2-fold proper rotation axes C 2 normal to C n; iii) a mirror plane σ h normal to C n and containing the C 2 s. The D 1h group is the same as the C 2v group in the pyramidal groups section.
The two octahedral cells project onto the entire volume of this envelope, while the 8 triangular prismic cells project onto its 8 triangular faces. The triangular-prism-first orthographic projection of the octahedral prism into 3D space has a hexagonal prismic envelope. The two octahedral cells project onto the two hexagonal faces.
They are sometimes called the axial or prismatic point groups. § The seven remaining point groups, which have multiple 3-or-more-fold rotation axes; these groups can also be characterized as point groups having multiple 3-fold rotation axes. The possible combinations are: Four 3-fold axes (the three tetrahedral symmetries T, T h, and T d)
A crystal system is a set of point groups in which the point groups themselves and their corresponding space groups are assigned to a lattice system. Of the 32 point groups that exist in three dimensions, most are assigned to only one lattice system, in which case the crystal system and lattice system both have the same name.
For example, in the rock salt ionic structure each sodium atom has six near neighbour chloride ions in an octahedral geometry and each chloride has similarly six near neighbour sodium ions in an octahedral geometry. In metals with the body centred cubic (bcc) structure each atom has eight nearest neighbours in a cubic geometry.
Each crystallographic point group defines the (geometric) crystal class of the crystal. The point group of a crystal determines, among other things, the directional variation of physical properties that arise from its structure, including optical properties such as birefringency, or electro-optical features such as the Pockels effect.
In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d).
A polychoric group is one of five symmetry groups of the 4-dimensional regular polytopes. There are also three polyhedral prismatic groups, and an infinite set of duoprismatic groups. Each group defined by a Goursat tetrahedron fundamental domain bounded by mirror planes. The dihedral angles between the mirrors determine order of dihedral symmetry.