When.com Web Search

  1. Ad

    related to: great circle arc length angle equation formula calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    A side (regarded as a great circle arc) is measured by the angle that it subtends at the centre. On the unit sphere, this radian measure is numerically equal to the arc length. By convention, the sides of proper spherical triangles are less than π , so that 0 < a + b + c < 2 π {\displaystyle 0<a+b+c<2\pi } (Todhunter, [ 1 ] Art.22,32).

  4. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  5. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as y = 1 − x 2 . {\displaystyle y={\sqrt {1-x^{2}}}.}

  6. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the center of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any diameter of any great circle coincides with a diameter ...

  7. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's goal was to express existing algorithms for geodesics on an ellipsoid in a form that minimized the program length (Vincenty 1975a). His unpublished report (1975b) mentions the use of a Wang 720 desk calculator, which had only a few kilobytes of memory. To obtain good accuracy for long lines, the solution uses the classical solution ...

  8. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):

  9. Geographical distance - Wikipedia

    en.wikipedia.org/wiki/Geographical_distance

    Then calculate the central angle in radians between two points (,) and (,) on a sphere using the Great-circle distance method (haversine formula), with longitudes and being the same on the sphere as on the spheroid.