When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    A side (regarded as a great circle arc) is measured by the angle that it subtends at the centre. On the unit sphere, this radian measure is numerically equal to the arc length. By convention, the sides of proper spherical triangles are less than π , so that 0 < a + b + c < 2 π {\displaystyle 0<a+b+c<2\pi } (Todhunter, [ 1 ] Art.22,32).

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  4. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the center of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any diameter of any great circle coincides with a diameter ...

  5. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...

  6. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.

  7. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    For example, consider the problem of finding the length of a quarter of the unit circle by numerically integrating the arc length integral. The upper half of the unit circle can be parameterized as y = 1 − x 2 . {\displaystyle y={\sqrt {1-x^{2}}}.}

  8. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    If a navigator begins at P 1 = (φ 1,λ 1) and plans to travel the great circle to a point at point P 2 = (φ 2,λ 2) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle

  9. Central angle - Wikipedia

    en.wikipedia.org/wiki/Central_angle

    Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]