When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  3. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    See: Area of a triangle § Using coordinates. The expression is equivalent to h = 2 A b {\textstyle h={\frac {2A}{b}}} , which can be obtained by rearranging the standard formula for the area of a triangle: A = 1 2 b h {\textstyle A={\frac {1}{2}}bh} , where b is the length of a side, and h is the perpendicular height from the opposite vertex.

  4. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  6. Heronian triangle - Wikipedia

    en.wikipedia.org/wiki/Heronian_triangle

    In geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. [1] [2] Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

  7. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol b) equals the triangle's area: A = h b /2. Thus, the longest altitude is perpendicular to the shortest side of the triangle.

  8. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    This formula is also known as the shoelace formula and is an easy way to solve for the area of a coordinate triangle by substituting the 3 points (x 1,y 1), (x 2,y 2), and (x 3,y 3). The shoelace formula can also be used to find the areas of other polygons when their vertices are known.

  9. Trilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Trilinear_coordinates

    The equation in trilinear coordinates x, y, z of any circumconic of a triangle is [1]: p. 192 l y z + m z x + n x y = 0. {\displaystyle lyz+mzx+nxy=0.} If the parameters l, m, n respectively equal the side lengths a, b, c (or the sines of the angles opposite them) then the equation gives the circumcircle .