Search results
Results From The WOW.Com Content Network
The Einstein field equations—which determine the geometry of spacetime in the presence of matter—contain the Ricci tensor, and so calculating the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations in which the Christoffel symbols ...
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows. Birkhoff's theorem has the consequence that any pulsating star that remains spherically symmetric does not generate gravitational waves , as the ...
The Christoffel symbols of this connection are given in terms of partial derivatives of the metric in local coordinates by the formula = (+) = (, +,,) (where commas indicate partial derivatives). The curvature of spacetime is then given by the Riemann curvature tensor which is defined in terms of the Levi-Civita connection ∇.
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field).
For example, they provide ... An exact solution to the Einstein field equations is the Schwarzschild metric, ... From this metric, the Christoffel symbols ...
The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor is derived from the Riemann curvature tensor, which can be written in terms of Christoffel symbols, a calculation of the Christoffel symbols is essential.
The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.