When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hungarian algorithm - Wikipedia

    en.wikipedia.org/wiki/Hungarian_algorithm

    The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.

  3. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.

  4. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    In the balanced assignment problem, both parts of the bipartite graph have the same number of vertices, denoted by n. One of the first polynomial-time algorithms for balanced assignment was the Hungarian algorithm. It is a global algorithm – it is based on improving a matching along augmenting paths (alternating paths between unmatched vertices).

  5. Hopcroft–Karp algorithm - Wikipedia

    en.wikipedia.org/wiki/Hopcroft–Karp_algorithm

    The algorithm was discovered by John Hopcroft and Richard Karp and independently by Alexander Karzanov . [3] As in previous methods for matching such as the Hungarian algorithm and the work of Edmonds (1965), the Hopcroft–Karp algorithm repeatedly increases the size of a partial matching by finding augmenting paths. These paths are sequences ...

  6. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.

  7. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Hopcroft–Karp algorithm: convert a bipartite graph to a maximum cardinality matching; Hungarian algorithm: algorithm for finding a perfect matching; Prüfer coding: conversion between a labeled tree and its Prüfer sequence; Tarjan's off-line lowest common ancestors algorithm: computes lowest common ancestors for pairs of nodes in a tree

  8. Maximum weight matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_weight_matching

    The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized.

  9. Minimum-cost flow problem - Wikipedia

    en.wikipedia.org/wiki/Minimum-cost_flow_problem

    Given a bipartite graph G = (A ∪ B, E), the goal is to find the maximum cardinality matching in G that has minimum cost. Let w: E → R be a weight function on the edges of E. The minimum weight bipartite matching problem or assignment problem is to find a perfect matching M ⊆ E whose total weight is minimized. The idea is to reduce this ...