Search results
Results From The WOW.Com Content Network
The Hungarian method is a combinatorial optimization algorithm that solves the assignment problem in polynomial time and which anticipated later primal–dual methods.It was developed and published in 1955 by Harold Kuhn, who gave it the name "Hungarian method" because the algorithm was largely based on the earlier works of two Hungarian mathematicians, Dénes Kőnig and Jenő Egerváry.
In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. [1] In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem.
In the balanced assignment problem, both parts of the bipartite graph have the same number of vertices, denoted by n. One of the first polynomial-time algorithms for balanced assignment was the Hungarian algorithm. It is a global algorithm – it is based on improving a matching along augmenting paths (alternating paths between unmatched vertices).
The algorithm was discovered by John Hopcroft and Richard Karp and independently by Alexander Karzanov . [3] As in previous methods for matching such as the Hungarian algorithm and the work of Edmonds (1965), the Hopcroft–Karp algorithm repeatedly increases the size of a partial matching by finding augmenting paths. These paths are sequences ...
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.
Hopcroft–Karp algorithm: convert a bipartite graph to a maximum cardinality matching; Hungarian algorithm: algorithm for finding a perfect matching; Prüfer coding: conversion between a labeled tree and its Prüfer sequence; Tarjan's off-line lowest common ancestors algorithm: computes lowest common ancestors for pairs of nodes in a tree
The first is also a perfect matching, while the second is far from it with 4 vertices unaccounted for, but has high value weights compared to the other edges in the graph. In computer science and graph theory, the maximum weight matching problem is the problem of finding, in a weighted graph, a matching in which the sum of weights is maximized.
Given a bipartite graph G = (A ∪ B, E), the goal is to find the maximum cardinality matching in G that has minimum cost. Let w: E → R be a weight function on the edges of E. The minimum weight bipartite matching problem or assignment problem is to find a perfect matching M ⊆ E whose total weight is minimized. The idea is to reduce this ...