Search results
Results From The WOW.Com Content Network
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Maxwell [1] for dilute gases and Josef Stefan [2] for liquids. The Maxwell–Stefan equation is [3 ...
In 1906 Smoluchowski published a one-dimensional model to describe a particle undergoing Brownian motion. [24] The model assumes collisions with M ≫ m where M is the test particle's mass and m the mass of one of the individual particles composing the fluid. It is assumed that the particle collisions are confined to one dimension and that it ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
The Fokker–Planck equation for this particle is the Smoluchowski diffusion equation: (, |,) = [(()) (, |,)] Where is the diffusion constant and =. The importance of this equation is it allows for both the inclusion of the effect of temperature on the system of particles and a spatially dependent diffusion constant.
The Bass model or Bass diffusion model was developed by Frank Bass. It consists of a simple differential equation that describes the process of how new products get adopted in a population. The model presents a rationale of how current adopters and potential adopters of a new product interact.