When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particle in a ring - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_ring

    The case of a particle in a one-dimensional ring is an instructive example when studying the quantization of angular momentum for, say, an electron orbiting the nucleus. The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring.

  3. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    A Feynman diagram represents a perturbative contribution to the amplitude of a quantum transition from some initial quantum state to some final quantum state. For example, in the process of electron-positron annihilation the initial state is one electron and one positron, while the final state is two photons.

  4. Particle in a one-dimensional lattice - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_one...

    In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs in the model of a periodic crystal lattice. The potential is caused by ions in the periodic structure of the crystal creating an electromagnetic field so electrons are subject to a regular potential inside the lattice.

  5. Quantum electrodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_electrodynamics

    The electron line represents an electron with a given energy and momentum, with a similar interpretation of the photon line. A vertex diagram represents the annihilation of one electron and the creation of another together with the absorption or creation of a photon, each having specified energies and momenta.

  6. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The electron's charge acts like it is smeared out in space in a continuous distribution, proportional at any point to the squared magnitude of the electron's wave function. Particle-like properties: The number of electrons orbiting a nucleus can be only an integer. Electrons jump between orbitals like particles.

  7. Particle in a spherically symmetric potential - Wikipedia

    en.wikipedia.org/wiki/Particle_in_a_spherically...

    Hydrogen atomic orbitals of different energy levels. The more opaque areas are where one is most likely to find an electron at any given time. In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space.

  8. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]

  9. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    Quantized energy levels result from the wave behavior of particles, which gives a relationship between a particle's energy and its wavelength. For a confined particle such as an electron in an atom, the wave functions that have well defined energies have the form of a standing wave. [3]

  1. Related searches particle in a ring derivation of energy diagram represents the electron

    particle in a ringanimated particle in a ring
    particle in a ring examplesparticle in a circle