Search results
Results From The WOW.Com Content Network
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another.
The (n-p) reaction, or (n,p) reaction, is an example of a nuclear reaction. It is the reaction which occurs when a neutron enters a nucleus and a proton leaves the nucleus simultaneously. [1] For example, sulfur-32 (32 S) undergoes an (n,p) nuclear reaction when bombarded with neutrons, thus forming phosphorus-32 (32 P).
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes (e.g., uranium-235 ...
Nuclear power is a type of nuclear technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. Nuclear energy is produced by a controlled nuclear chain reaction which creates heat—and which is used to boil water, produce steam, and drive a steam turbine.
Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. Activation is inherently different than contamination. Neutrons are only free in quantity in the microseconds of a nuclear weapon's explosion, in an active nuclear reactor, or in a spallation neutron source.
The residual radiation is emitted after the initial attack from materials that were impacted by the detonation. These materials let off nuclear radiation in the form of residual radiation. [8] In the event of a nuclear attack, a human body can be irradiated by at least three processes.