Search results
Results From The WOW.Com Content Network
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality ...
It is possible to have variables X and Y which are individually normally distributed, but have a more complicated joint distribution. In that instance, X + Y may of course have a complicated, non-normal distribution. In some cases, this situation can be treated using copulas.
There is a one-to-one correspondence between cumulative distribution functions and characteristic functions, so it is possible to find one of these functions if we know the other. The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f).
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y , the distribution of the random variable Z that is formed as the product Z = X Y {\displaystyle Z=XY} is a product distribution .
An element x is called a dual distributive element if ∀y,z: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). In a distributive lattice, every element is of course both distributive and dual distributive. In a non-distributive lattice, there may be elements that are distributive, but not dual distributive (and vice versa).
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In probability theory, the stability of a random variable is the property that a linear combination of two independent copies of the variable has the same distribution, up to location and scale parameters. [1] The distributions of random variables having this property are said to be "stable distributions".