Search results
Results From The WOW.Com Content Network
In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows
Use of LaTeX for formulas involving symbols that are not regularly rendered in Unicode (see MOS:BBB) Avoid formulas in section headings, and when this is necessary, use raw HTML (see Finite field for an example) The choice between {} and LaTeX depends on the editor. Converting a page from one format to another must be done with stronger reasons ...
The symbol was introduced originally in 1770 by Nicolas de Condorcet, who used it for a partial differential, and adopted for the partial derivative by Adrien-Marie Legendre in 1786. [3] It represents a specialized cursive type of the letter d , just as the integral sign originates as a specialized type of a long s (first used in print by ...
The Schwarzschild solution appears to have singularities at r = 0 and r = r s; some of the metric components "blow up" (entail division by zero or multiplication by infinity) at these radii. Since the Schwarzschild metric is expected to be valid only for those radii larger than the radius R of the gravitating body, there is no problem as long ...
If the derivative does not lie on the tangent space, the right expression is the projection of the derivative over the tangent space (see covariant derivative below). Symbols of the second kind decompose the change with respect to the basis, while symbols of the first kind decompose it with respect to the dual basis.
Symbol Name Meaning SI unit of measure nabla dot the divergence operator often pronounced "del dot" per meter (m −1) nabla cross the curl operator often pronounced "del cross" per meter (m −1) nabla: delta (differential operator)
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold.Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection.
Thus, the Schwarzian derivative precisely measures the degree to which a function fails to be a Möbius transformation. [1] If g is a Möbius transformation, then the composition g o f has the same Schwarzian derivative as f; and on the other hand, the Schwarzian derivative of f o g is given by the chain rule