Search results
Results From The WOW.Com Content Network
The space of all candidate solutions, before any feasible points have been excluded, is called the feasible region, feasible set, search space, or solution space. [2] This is the set of all possible solutions that satisfy the problem's constraints. Constraint satisfaction is the process of finding a point in the feasible set.
The feasible region or solution space of the MAP is very large. The number K {\displaystyle K} of feasible solutions (the size of the MAP instance) depends on the MAP parameters D , N {\displaystyle D,N} .
A closed feasible region of a problem with three variables is a convex polyhedron. The surfaces giving a fixed value of the objective function are planes (not shown). The linear programming problem is to find a point on the polyhedron that is on the plane with the highest possible value.
The feasible set of the optimization problem consists of all points satisfying the inequality and the equality constraints. This set is convex because D {\displaystyle {\mathcal {D}}} is convex, the sublevel sets of convex functions are convex, affine sets are convex, and the intersection of convex sets is convex.
The possible results of Phase I are either that a basic feasible solution is found or that the feasible region is empty. In the latter case the linear program is called infeasible. In the second step, Phase II, the simplex algorithm is applied using the basic feasible solution found in Phase I as a starting point.
In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions.
If it is not, there is guaranteed to exist a linear inequality that separates the optimum from the convex hull of the true feasible set. Finding such an inequality is the separation problem, and such an inequality is a cut. A cut can be added to the relaxed linear program. Then, the current non-integer solution is no longer feasible to the ...
A. The feasible set {b+L} ∩ K is bounded, and intersects the interior of the cone K. B. We are given in advance a strictly-feasible solution x^, that is, a feasible solution in the interior of K. C. We know in advance the optimal objective value, c*, of the problem. D. We are given an M-logarithmically-homogeneous self-concordant barrier F ...