When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...

  3. Curiously recurring template pattern - Wikipedia

    en.wikipedia.org/wiki/Curiously_recurring...

    However, if base class member functions use CRTP for all member function calls, the overridden functions in the derived class will be selected at compile time. This effectively emulates the virtual function call system at compile time without the costs in size or function call overhead (VTBL structures, and method lookups, multiple-inheritance ...

  4. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.

  5. Divide-and-conquer algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_algorithm

    The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort , merge sort ), multiplying large numbers (e.g., the Karatsuba algorithm ), finding the closest pair of points , syntactic ...

  6. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    Its solution tree has a node for each recursive call, with the children of that node being the other calls made from that call. The leaves of the tree are the base cases of the recursion, the subproblems (of size less than k) that do not recurse. The above example would have a child nodes at each non-leaf node.

  7. General recursive function - Wikipedia

    en.wikipedia.org/wiki/General_recursive_function

    The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .

  8. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...

  9. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication [ 2 ] of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann ...