Search results
Results From The WOW.Com Content Network
The characteristic equation of a third-order constant coefficients or Cauchy–Euler (equidimensional variable coefficients) linear differential equation or difference equation is a cubic equation. Intersection points of cubic Bézier curve and straight line can be computed using direct cubic equation representing Bézier curve.
The graph of any cubic function is similar to such a curve. The graph of a cubic function is a cubic curve, though many cubic curves are not graphs of functions. Although cubic functions depend on four parameters, their graph can have only very few shapes. In fact, the graph of a cubic function is always similar to the graph of a function of ...
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.
In mathematics, a cubic plane curve is a plane algebraic curve C defined by a cubic equation F ( x , y , z ) = 0 {\displaystyle F(x,y,z)=0} applied to homogeneous coordinates ( x : y : z ) {\displaystyle (x:y:z)} for the projective plane ; or the inhomogeneous version for the affine space determined by setting z = 1 in such an ...
In it, geometrical shapes can be made, as well as expressions from the normal graphing calculator, with extra features. [8] In September 2023, Desmos released a beta for a 3D calculator, which added features on top of the 2D calculator, including cross products, partial derivatives and double-variable parametric equations. [9]
Cubic polynomial splines are extensively used in computer graphics and geometric modeling to obtain curves or motion trajectories that pass through specified points of the plane or three-dimensional space. In these applications, each coordinate of the plane or space is separately interpolated by a cubic spline function of a separate parameter t.
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS). A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual. This leaves the other graphs in the 3-connected class because each 3-regular graph can be ...
The equations of some of the cubics listed in the Catalogue are so incredibly complicated that the maintainer of the website has refrained from putting up the equation in the webpage of the cubic; instead, a link to a file giving the equation in an unformatted text form is provided.