Search results
Results From The WOW.Com Content Network
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
Informally, however, a difference in the energy of a system that occurs solely because of a difference in its temperature is commonly called heat, and the energy that flows across a boundary as a result of a temperature difference is "heat". Altitude (or elevation) is usually not a thermodynamic property.
Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is: = which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant.
Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental thermodynamic relation. It may be expressed in other ways, using different variables (e.g. using thermodynamic potentials). For example, the fundamental relation may be expressed in terms of the ...
Temperature is the driving force, entropy is the associated displacement, and the two form a pair of conjugate variables. The temperature/entropy pair of conjugate variables is the only heat term; the other terms are essentially all various forms of work.
The zeroth law is of importance in thermometry, because it implies the existence of temperature scales. In practice, C is a thermometer, and the zeroth law says that systems that are in thermodynamic equilibrium with each other have the same temperature. The law was actually the last of the laws to be formulated.
A major use of the integrated equation is to estimate a new equilibrium constant at a new absolute temperature assuming a constant standard enthalpy change over the temperature range. To obtain the integrated equation, it is convenient to first rewrite the Van 't Hoff equation as [ 2 ]
The concept of internal energy and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The ...