Search results
Results From The WOW.Com Content Network
The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ 0 (n), or the number-of-divisors function [1] [2] (OEIS: A000005). When z is 1, the function is called the sigma function or sum-of-divisors function , [ 1 ] [ 3 ] and the subscript is often omitted, so σ ( n ) is the same as σ 1 ( n ) ( OEIS ...
Divisors can be negative as well as positive, although often the term is restricted to positive divisors. For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer.
a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.
For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...
σ k (n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ 0 (n), the number of divisors of n, is usually written d(n) and σ 1 (n), the sum of the divisors of n, is usually written σ(n). If s > 0,
There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.
The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the prime divisors {p} of N, of the prime powers p r p for p ...
To see this, observe that the sum of the divisors of a perfect number M is exactly 2M; therefore, the average of the divisors is M(2/τ(M)), where τ(M) denotes the number of divisors of M. For any M, τ(M) is odd if and only if M is a square number, for otherwise each divisor d of M can be paired with a different divisor M/d.