When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...

  3. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    1000 = 2 3 ×5 3, 1001 = 7×11×13. Factors p 0 = 1 may be inserted without changing the value of n (for example, 1000 = 2 3 ×3 0 ×5 3). In fact, any positive integer can be uniquely represented as an infinite product taken over all the positive prime numbers, as

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Prime decomposition of n = 864 as 2 5 × 3 3. By the fundamental theorem of arithmetic, every positive integer has a unique prime factorization. (By convention, 1 is the empty product.) Testing whether the integer is prime can be done in polynomial time, for example, by the AKS primality test. If composite, however, the polynomial time tests ...

  5. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  7. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Every positive integer has a unique factorization into a square-free number r and a square number s 2. For example, 75,600 = 2 4 3 3 5 2 7 1 = 21 ⋅ 60 2. Let N be a positive integer, and let k be the number of primes less than or equal to N. Call those primes p 1, ... , p k. Any positive integer a which is less than or equal to N can then be ...

  8. Irreducible element - Wikipedia

    en.wikipedia.org/wiki/Irreducible_element

    The irreducible elements are the terminal elements of a factorization process; that is, they are the factors that cannot be further factorized. If the irreducible factors of every non-zero non-unit element are uniquely defined, up to the multiplication by a unit, then the integral domain is called a unique factorization domain , but this does ...

  9. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    (Note that values of n congruent to 2 modulo 4 are redundant since Q(ζ 2n) = Q(ζ n) when n is odd.) On the other hand, the maximal real subfields Q(cos(2π/2 n)) of the 2-power cyclotomic fields Q(ζ 2 n) (where n is a positive integer) are known to have class number 1 for n≤8, [8] and it is conjectured that they have class number 1 for all ...