When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cassie's law - Wikipedia

    en.wikipedia.org/wiki/Cassie's_law

    One example of a superhydrophobic surface in nature is the Lotus leaf. [12] Lotus leaves have a typical contact angle of θ ∼ 160 ∘ {\displaystyle \theta \sim 160^{\circ }} , ultra low water adhesion due to minimal contact areas, and a self cleaning property which is characterised by the Cassie-Baxter equation. [ 13 ]

  3. Lotus effect - Wikipedia

    en.wikipedia.org/wiki/Lotus_effect

    On contact of liquid with a surface, adhesion forces result in wetting of the surface. Either complete or incomplete wetting may occur depending on the structure of the surface and the fluid tension of the droplet. [12] The cause of self-cleaning properties is the hydrophobic water-repellent double structure of the surface. [13]

  4. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    To incorporate the effect of adhesion in Hertzian contact, Johnson, Kendall, and Roberts [5] formulated the JKR theory of adhesive contact using a balance between the stored elastic energy and the loss in surface energy. The JKR model considers the effect of contact pressure and adhesion only inside the area of contact.

  5. Wetting - Wikipedia

    en.wikipedia.org/wiki/Wetting

    The water drops maintain their spherical shape due to the superhydrophobicity of the petal (contact angle of about 152.4°), but do not roll off because the petal surface has a high adhesive force with water. [41] When comparing the "petal effect" to the "lotus effect", it is important to note some striking differences. The surface structure of ...

  6. Quasi-geostrophic equations - Wikipedia

    en.wikipedia.org/wiki/Quasi-geostrophic_equations

    The quasi-geostrophic equations are approximations to the shallow water equations in the limit of small Rossby number, so that inertial forces are an order of magnitude smaller than the Coriolis and pressure forces. If the Rossby number is equal to zero then we recover geostrophic flow.

  7. Buckley–Leverett equation - Wikipedia

    en.wikipedia.org/wiki/Buckley–Leverett_equation

    In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.

  8. Adhesion - Wikipedia

    en.wikipedia.org/wiki/Adhesion

    Note 1: Adhesion requires energy that can come from chemical and/or physical linkages, the latter being reversible when enough energy is applied. Note 2: In biology, adhesion reflects the behavior of cells shortly after contact to the surface. Note 3: In surgery, adhesion is used when two tissues fuse unexpectedly. [1]

  9. Plasma activation - Wikipedia

    en.wikipedia.org/wiki/Plasma_activation

    Plasma activation (or plasma functionalization) is a method of surface modification employing plasma processing, which improves surface adhesion properties of many materials including metals, glass, ceramics, a broad range of polymers and textiles and even natural materials such as wood and seeds. Plasma functionalization also refers to the ...