Search results
Results From The WOW.Com Content Network
A De Finetti diagram visualizing genotype frequencies as distances to triangle edges x (AA), y (Aa) and z (aa) in a ternary plot. The curved line are the Hardy–Weinberg equilibria . A Punnett square visualizing the genotype frequencies of a Hardy–Weinberg equilibrium as areas of a square.
One way to visualize the similarity between two protein or nucleic acid sequences is to use a similarity matrix, known as a dot plot. These were introduced by Gibbs and McIntyre in 1970 [1] and are two-dimensional matrices that have the sequences of the proteins being compared along the vertical and horizontal axes.
Example for a trait under positive selection. The Price equation shows that a change in the average amount of a trait in a population from one generation to the next is determined by the covariance between the amounts of the trait for subpopulation and the fitnesses of the subpopulations, together with the expected change in the amount of the trait value due to fitness, namely ():
Genoeconomics is an interdisciplinary field of protoscience that aims to combine molecular genetics and economics. [1]Genoeconomics is based on the idea that economic indicators have a genetic basis — that a person's financial behaviour can be traced to their DNA and that genes are related to economic behaviour.
Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. [1] Specifically, it is the fraction of all chromosomes in the population that carry that allele over the total population or sample size.
Selection coefficient, usually denoted by the letter s, is a measure used in population genetics to quantify the relative fitness of a genotype compared to other genotypes. . Selection coefficients are central to the quantitative description of evolution, since fitness differences determine the change in genotype frequencies attributable to selecti
Where d is the distance in map units, the Morgan Mapping Function states that the recombination frequency r can be expressed as =.This assumes that one crossover occurs, at most, in an interval between two loci, and that the probability of the occurrence of this crossover is proportional to the map length of the interval.
A diagram of DNA base pairing, demonstrating the basis for Chargaff's rules. Chargaff's rules (given by Erwin Chargaff) state that in the DNA of any species and any organism, the amount of guanine should be equal to the amount of cytosine and the amount of adenine should be equal to the amount of thymine.