When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy. It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms).

  3. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  4. Uniform boundedness - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness

    Every uniformly convergent sequence of bounded functions is uniformly bounded. The family of functions f n ( x ) = sin ⁡ n x {\displaystyle f_{n}(x)=\sin nx} defined for real x {\displaystyle x} with n {\displaystyle n} traveling through the integers , is uniformly bounded by 1.

  5. Littlewood's three principles of real analysis - Wikipedia

    en.wikipedia.org/wiki/Littlewood's_three...

    Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...

  6. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    Corollary — If a sequence of bounded operators () converges pointwise, that is, the limit of (()) exists for all , then these pointwise limits define a bounded linear operator . The above corollary does not claim that T n {\displaystyle T_{n}} converges to T {\displaystyle T} in operator norm, that is, uniformly on bounded sets.

  7. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    Every bounded-above monotonically nondecreasing sequence of real numbers is convergent in the real numbers because the supremum exists and is a real number. The proposition does not apply to rational numbers because the supremum of a sequence of rational numbers may be irrational.

  8. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Definition: A set is sequentially compact if every sequence {} in has a convergent subsequence converging to an element of . Theorem: A ⊆ R n {\displaystyle A\subseteq \mathbb {R} ^{n}} is sequentially compact if and only if A {\displaystyle A} is closed and bounded.

  9. Bounded variation - Wikipedia

    en.wikipedia.org/wiki/Bounded_variation

    As particular examples of Banach spaces, Dunford & Schwartz (1958, Chapter IV) consider spaces of sequences of bounded variation, in addition to the spaces of functions of bounded variation. The total variation of a sequence x = ( x i ) of real or complex numbers is defined by